The Potential Relationship Between Leg Bone Length and Running Performance in Well-Trained Endurance Runners
Article (PDF)
Authors
Hiromasa Ueno, Tadashi Suga, Kenji Takao, Yuto Miyake, Masafumi Terada, Akinori Nagano, Tadao Isaka
Abstract
The present study aimed to determine the relationship between leg bone length and running performance in well-trained endurance runners. The lengths of the leg bones in 42 male endurance runners (age: 20.0 ± 1.0 years, body height: 169.6 ± 5.6 cm, body mass: 56.4 ± 5.1 kg, personal best 5000-m race time: 14 min 59 s ± 28 s) were measured using magnetic resonance imaging. The lengths of the femur and tibia were calculated to assess the upper and lower leg lengths, respectively. The total length of the femur + tibia was calculated to assess the overall leg bone length. These lengths of the leg bones were normalized with body height, which was measured using a stadiometer to minimize differences in body size among participants. The relative tibial length was significantly correlated with personal best 5000-m race time (r = -0.328, p = 0.034). Moreover, a trend towards significance was observed in the relative femoral length (r = -0.301, p = 0.053). Furthermore, the relative total lengths of the femur + tibia were significantly correlated with personal best 5000-m race time (r = -0.353, p < 0.05). These findings suggest that although the relationship between the leg bone length and personal best 5000-m race time was relatively minor, the leg bone length, especially of the tibia, may be a potential morphological factor for achieving superior running performance in well-trained endurance runners.
DOI
DOI: 10.2478/hukin-2019-0039
Key words
bone morphology, running economy, Achilles tendon length, step length, magnetic resonance imaging