Relationships between Mechanical Variables in the Traditional and Close-Grip Bench Press

 Article (PDF) 
Robert G. Lockie, Samuel J. Callaghan, Matthew R. Moreno, Fabrice G. Risso, Tricia M. Liu, Alyssa A. Stage, Samantha A. Birmingham-Babauta, John J. Stokes, Dominic V. Giuliano, Adrina Lazar, DeShaun L. Davis, Ashley J. Orjalo

The study aim was to determine relationships between mechanical variables in the one-repetition maximum (1RM) traditional bench press (TBP) and close-grip bench press (CGBP). Twenty resistance-trained men completed a TBP and CGBP 1RM. The TBP was performed with the preferred grip; the CGBP with a grip width of 95% biacromial distance. A linear position transducer measured: lift distance and duration; work; and peak and mean power, velocity, and force. Paired samples t-tests (p < 0.05) compared the 1RM and mechanical variables for the TBP and CGBP; effect sizes (d) were also calculated. Pearson’s correlations (r; p < 0.05) computed relationships between the TBP and CGBP. 1RM, lift duration, and mean force were greater in the TBP (d = 0.30-3.20). Peak power and velocity was greater for the CGBP (d = 0.50-1.29). The 1RM TBP correlated with CGBP 1RM, power, and force (r = 0.685-0.982). TBP work correlated with CGBP 1RM, lift distance, power, force, and work (r = 0.542-0.931). TBP power correlated with CGBP 1RM, power, force, velocity, and work (r = 0.484-0.704). TBP peak and mean force related to CGBP 1RM, power, and force (r = 0.596-0.980). Due to relationships between the load, work, power, and force for the TBP and CGBP, the CGBP could provide similar strength adaptations to the TBP with long-term use. The velocity profile for the CGBP was different to that of the TBP. The CGBP could be used specifically to improve high-velocity, upper-body pushing movements.
DOI: 10.1515/hukin-2017-0109
Key words
1RM, bar velocity, force, linear position transducer, power, upper-body strength

You may also like...