Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

 Article (PDF) 
Authors
Shun-Ping Lin, Wen-Hsu Sung, Fon-Chu Kuo, Terry B.J. Kuo, Jin-Jong Chen
Abstract

Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional center-of-mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5) and a sub-elite group (SG; n = 5). The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each) was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML) acceleration (r = −0.83 to −0.93, p < 0.05), and between anterior–posterior (AP) acceleration and running distance (r = −0.8953 to −0.9653, p < 0.05), but not for vertical control of the center of mass. This study suggests that runners reduce stride length to minimize mediolateral sway and the effects of braking on the trunk; moreover, cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated.
DOI
DOI: 10.2478/hukin-2014-0109
Key words
accelerometer, race distance, ultra-marathon,

You may also like...